
THE COTES-NEWTON FACTORIZATION OF xn ± 1

RANJAN ROY

The Cotes-Newton factorization formula is presented in the first chapter of the
NIST Handbook. While Frank Olver and I were composing this chapter, I told him
that I was researching the provenance and development of this and other key formu-
las, and he was helpful and encouraging. It was a real pleasure to work with Frank
and I offer this bit of historical background in honor of his tremendous achievement
in bringing the NIST Handbook to fruition in such accurate and accessible form.

Newton was the first mathematician to investigate the factorization of the binomials
xn±1. It seems that his study of this very interesting problem arose in the course of
his efforts to obtain series for π, similar to Leibniz’s famous 1673 series. Note that
Leibniz’s series, contained in his letter for British mathematicians via Oldenburg,
was first discovered by Madhava in the fourteenth century and may be written as
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In his October, 1676 reply to Leibniz via Oldenburg, Newton presented an inter-
esting variation of the Madhava-Leibniz formula:
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In this letter, Newton made a cryptic remark about how he derived the result, but
evidence suggests that Leibniz did not understand his meaning. However, it is clear
from Newton’s notes from around 1676 that he expanded (1 + x2)/(1 + x4) as a
series and integrated over (0, 1) to obtain the series in (1). He then factored x4 + 1
as
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and applied partial fractions to evaluate∫ 1
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as a sum of two arctangents.

In a 1702 paper, Leibniz factored
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and then wondered whether integrals such as∫

dx/(x4 + a4) ,

∫
dx/(x8 + a8) , etc.

could be evaluated in terms of logarithms and inverse trigonometric functions. This
indicates that Leibniz had not deciphered Newton’s comment on how he evaluated
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(1).

In his factorization of xn±1, Newton used the method of undetermined coefficients;
he learned this from his careful study of Descartes. In his old age, Newton described
to de Moivre his method of reading Descartes: He followed the text until he came
to a difficulty, and then began study from the beginning again; he found that by
doing this, he could make progress beyond his stopping point, until he came to a
new obstacle, sending him back to the beginning, and so on. Descartes discovered
the technique of undetermined coefficients and used it to solve the quartic equation
by first factorizing the quartic

x4 + px2 + qx+ r = (x2 − yx+ c)(x2 + yx+ d) ,

and then equating coefficients to show that y2 satisfied a cubic. In a similar manner,
Newton started with the factorization

(3) (1 + nx+ x2)(1− nx+ px2 − qx3 + rx4 − · · · ) = 1± xm ,

when m = 3, 4, . . . , 12. By equating coefficients, he found the algebraic equation
satisfied by n as he eliminated the other unknowns p, q, r, etc. For example, when
m = 4 in (3), Newton had n3− 2n = 0, so that n = ±

√
2 when the coefficient of x4

was +1 and n = 0 when the coefficient was −1. For the case m = 8, Newton gave
the equation for n as

n7 − 6n5 + 10n3 − 4n = 0

and he wrote down the solutions as

nn = 2 & 2±
√

2.

The values n = ±
√

2 were involved in the factors of x8 − 1 and the values n =

±
√

2 +
√

2 were in the factors of x8 + 1. Newton also observed that 2 cos(π/8) =√
2 +
√

2 and drew a figure of a right triangle with an angle of 22 1
2 degrees. Thus,

Newton would have required just one more step to obtain the Cotes factorization of
xn ± 1. Another curious thing in Newton’s notes is that he wrote down the factors
only when the coefficients of the factors could be expressed in terms of square roots.
In his comments on Newton’s notes, Whiteside reflected on whether Newton had
thought about the values of m in xm − 1, whose factors were expressible in terms
of quadratic surds. This question is related to Gauss’s work on the constructibility
of regular polygons. Of course, there is no suggestion that Newton made this con-
nection.

Now Newton did not publish any of this material and we may speculate that Cotes’s
interest in this factorization problem was aroused by Leibniz and Johann Bernoulli’s
1702 papers on the integration of rational functions. They had not succeeded in
determining the factors of xn + an, needed to evaluate

∫
dx/(xn + an). In a May

5, 1716 letter to William Jones, Cotes wrote that he had resolved the factorization
problem raised by Leibniz’s paper. Cotes died shortly after this, before publishing
his work. His cousin, Robert Smith, edited Cotes’s unpublished manuscripts and
had them printed as the Harmonia Mensurarum of 1722. Cotes had not given
an explicit proof of the factorization formula; Henry Pemberton soon provided a
geometric argument. We note that the Harmonia also presents without proof the
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formula

(4) log(cos θ + i sin θ) = iθ .

As described in the Harmonia, the formula contains an error in sign; the i =
√
−1

appears on the other side of the equation.

In 1730, de Moivre published an analytic proof of a more general formula expressible
in modern form as

(5) x2n − (2 cosnθ)anxn + a2n =

n−1∏
k=0
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n

)
ax+ a2

)
.

This proof was based on a result de Moivre found in 1707: If l and x are cosines of
arcs A and B of the unit circle and A : B = n : 1, then
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In modern form, this may be written as

(7) cos θ =
1

2

(
(cosnθ + i sinnθ)1/n + (cosnθ − i sinnθ)1/n

)
.

De Moivre did not provide a verification of this result, but Daniel Bernoulli pre-
sented a proof in 1728. First, note de Moivre’s derivation of the product formula
(5). He set

z =
n

√
l +
√
l2 − 1 or z2n − 2lzn + 1 = 0 , where l = cosnθ .

Then, by (6),

x = (z + 1/z)/2 or z2 − 2xz + 1 = 0, where x = cos θ .

So de Moivre concluded that z2n − 2lzn + 1 = 0, when z2 − 2xz + 1 = 0; in other
words, z2−2xz+1 was a factor of z2n−2lzn+1. To obtain the other n−1 factors,
de Moivre gave a verbal argument, amounting to the formula

(cosnθ ± i sinnθ)1/n = cos

(
2kπ ± nθ

n

)
+ i sin

(
2kπ ± nθ

n

)
, k = 0, 1, 2, . . . .

This proved his factorization formula and he deduced Cotes’s formulas by taking
θ = 0 and θ = π.

In his 1728 paper on recurrent series, Daniel Bernoulli gave a result from which (6)
can easily be derived. By a recurrent series, he meant a sequence A0, A1, A2, . . .
such that

(8) a0An+k + a1An+k−1 + · · ·+ akAn = 0, n = 0, 1, 2, . . . ,

where a0, a1, . . . , ak were given constants. Bernoulli provided a method, usually
presented in modern textbooks, for solving the difference equation (8). He also
introduced the method of writing the general solution as a linear combination of k
special solutions. We note in passing that it took a decade of struggle before Euler
realized that the same idea could be carried over to linear differential equations
with constant coefficients. As an application of his method, Bernoulli considered
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the sequence sin θ, sin 2θ, sin 3θ, . . .. Note that the addition formula for the sine
function implies that for An = sinnθ,

(9) An+1 +An−1 = sin(n+ 1)θ + sin(n− 1)θ = 2 cos θ sin nθ = 2 cos θAn .

Taking Ax = λx in (9) and dividing by λn−1 produces

λ2 − 2 cos θ λ+ 1 = 0 .

The solutions of these equations are

λ1 = cos θ +
√

cos2 θ − 1 = cos θ +
√
−1 sin θ,

λ2 = cos θ −
√

cos2 θ − 1 = cos θ −
√
−1 sin θ ;

note that λ1λ2 = 1. Using this and the initial values, one arrives at Bernoulli’s
result

(10) sinnθ =
1

2
√
−1

(
(cos θ +

√
cos2 θ − 1)n − (cos θ +

√
cos2 θ − 1)−n

)
.

Similarly, from the sequence 1, cos θ, cos 2θ, . . . , one may obtain

(11) cosnθ =
1

2

(
(cos θ +

√
cos2 θ − 1)n + (cos θ +

√
cos2 θ − 1)−n

)
.

De Moivre’s (6) now follows immediately from (10) and (11). We remark that in
1717 de Moivre had presented his discovery of the method of generating functions
to solve the difference equation (8).

Recall that Newton was interested in factorizing 1 +xm to evaluate integrals of the
form

∫
xn dx/(1 +xm) from which one could obtain various series for π. Of course,

he was also interested in extending his table of integrals. Leibniz, Johann Bernoulli,
and Cotes were also interested in the problem of integrating rational functions, but
Euler was the first mathematician to write extensively on this subject. He devoted
hundreds of pages to this topic, relating it to the gamma function, partial fractions
expansions of trigonometric functions, and series for π and powers of π. In a 1744
paper, he applied his work to the evaluation of the beta integral

(12)

∫ ∞
0

xm−1 dx

1 + x2n
, m < 2n .

In a posthumous paper of 1785, he considered the more general integral

(13)

∫ ∞
0

xm−1 dx

1− 2xk cos θ + x2k
.

Using de Moivre’s factorization (5), he expressed the integrand in partial fractions

(14)
xm−1

1− 2xk cos θ + x2k
=

k−1∑
s=0

As +Bsx

1− 2x cos
(
2sπ+θ
k

)
+ x2

,

where, with ωs = (2sπ + θ)/k,

Bs =
sin(mws − θ)

k sin θ
, As = − sin((m− 1)ws − θ)

k sin θ
.
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He noted that∫
(As +Bsx) dx

1− 2x cosws + x2
=

∫ (
Bs(x− cosωs)

1− 2x cosws + x2
+

(As +Bs cosωs)

1− 2x cosws + x2

)
dx

=
1

2
Bs log(1− 2x cosws + x2) +

As +Bs cosωs
sinws

arctan
x sinws

1− x cosws
.(15)

Finally, Euler computed the value of the expression (15) at 0 and ∞ and summed
it over s from 0 to k−1. The value at 0 may immediately be seen to be 0. However,
the sum of the values at ∞ requires skill in dealing with trigonometric sums and
Euler devoted several pages to this.

The sums facing Euler were

log x

k sin θ

k−1∑
s=0

sin(2sα+ ζ) , where α =
mπ

k
and ζ =

(m− k)θ

k
,

and

1

k sin θ

k−1∑
s=0

(π − ws) cos(mws − θ) .

His final result, obtained by clever use of the addition formula, was

(16)

∫ ∞
0

xm−1

1− 2xk cos θ + x2k
dx =

π sin m(π−θ)+kθ
k

k sin θ sin mπ
k

.

Euler noted the special cases when θ = π/2 and θ = π:

(17)

∫ ∞
0

xm−1

1 + x2k
dx =

π

2k sin mπ
2k

and ∫ ∞
0

xm−1 dx

(1 + xk)2
=

(1− m
k )π

k sin mπ
k

.

Of course, the second particular case can be directly obtained from the first. Euler
deduced some remarkable partial fractions expansions from (16); for example:

π sin(nη/k)

2k2 sin(nπ/k)
=

sin η

k2 − n2
− 2 sin 2η

4k2 − n2
+

3 sin 3η

9k2 − n2
− 4 sin 4η

16k2 − n2
+ · · · .

This series may also be viewed as the Fourier expansion of the function on the
left-hand side.

Dedekind’s 1852 doctoral thesis, written under Gauss’s supervision, succeeded in
streamlining the evaluation of (17). Dedekind noted that his evaluation avoided
the tedious computations at∞ contained in textbooks. He started with the partial
fractions expansion

xm−1

xn + 1
=
−1

n

n∑
k=1

ζ(2k−1)m

x− ζ2k−1
,

where ζ = eπi/n. Integration gave him

(18)

∫ ∞
0

x
m
n −1

x+ 1
dx = n

∫
xm−1

xn + 1
dx = −

n∑
k=1

ζm(2k−1) log(ζ2k−1 − x) .
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At x = 0, the sum without the negative sign would be

(19)

n∑
k=1

ζm(2k−1) log(ζ2k−1) =
πi

n

n∑
k=1

(2k − 1)ζm(2k−1) =
π

sin(mπ/n)
.

To evaluate (18) at ∞, Dedekind rewrote the expression as

−
n∑
k=1

ζm(2k−1) log

(
ζ2k−1

x
− 1

)
− log x

n∑
k=1

ζm(2k−1) .

The sum multiplying log x is easily seen to be zero. Therefore, the value at∞ must
be

− log(−1)

n∑
k=1

ζm(2k−1) = 0 .

Thus, (19) yields the value of the beta integral∫ ∞
0

x
m
n −1 dx

1 + x
.

Notes on the Literature

For Descartes’s work on the quartic, see Descartes (1954), pp. 180–192. To read
Newton’s factorization method, see Newton (1967–81), vol. 4, pp. 205–213. Euler
(1911–2000), I-18, pp. 190–208 contains his 1785 paper, discussed above. For Eu-
ler’s earlier work on integration of rational functions, see I-17. The original source
for Cotes’s papers is his Harmonia Mensararum, Cotes (1722). Gowing (1983)
presents a detailed discussion of Cotes’s mathematical work; see p. 50 for equation
(4) and pp. 67–79 for the factorization formulas. Leibniz (1971), vol. 5, pp. 350–
362 contains his 1702 paper on integration of rational functions. For de Moivre’s
factorization, see the first few pages of de Moivre (1730). Smith (1959), vol. II, pp.
440–454 gives an English translation of the relevant portions of de Moivre’s work.
See Bernoulli (1982–96), vol. 2, pp. 49–64 for his paper on difference equations.
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